The role of magnocellular signals in oculomotor attentional capture.

نویسندگان

  • Carly J Leonard
  • Steven J Luck
چکیده

While it is known that salient distractors often capture covert and overt attention, it is unclear whether salience signals that stem from magnocellular visual input have a more dominant role in oculomotor capture than those that result from parvocellular input. Because of the direct anatomical connections between the magnocellular pathway and the superior colliculus, salience signals generated from the magnocellular pathway may produce greater oculomotor capture than those from the parvocellular pathway, which could be potentially harder to overcome with "top-down," goal-directed guidance. Although previous research has addressed this with regard to magnocellular transients, in the current research, we investigated whether a static singleton distractor defined along a dimension visible to the magnocellular pathway would also produce enhanced oculomotor capture. In two experiments, we addressed this possibility by comparing a parvo-biased singleton condition, in which the distractor was defined by isoluminant chromatic color contrast, with a magno + parvo singleton condition, in which the distractor also differed in luminance from the surrounding objects. In both experiments, magno + parvo singletons elicited faster eye movements than parvo-only singletons, presumably reflecting faster information transmission in the magnocellular pathway, but magno + parvo singletons were not significantly more likely to produce oculomotor capture. Thus, although magnocellular salience signals are available more rapidly, they have no sizable advantage over parvocellular salience signals in controlling oculomotor orienting when all stimuli have a common onset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oculomotor distraction by signals invisible to the retinotectal and magnocellular pathways.

Irrelevant stimulus onsets interfere with saccade planning to other stimuli, prolonging saccadic latency (the oculomotor distractor effect) or eliciting directional errors (saccadic capture). Such stimulus-driven interference has been associated with the retinotectal pathway, the direct pathway from retina to superior colliculus. Consistent with this theory, the distractor effect has not been f...

متن کامل

Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture.

Five visual search experiments found oculomotor and attentional capture consistent with predictions of contingent orienting, contrary to claims that oculomotor capture is purely stimulus driven. Separate saccade and attend-only conditions contained a color target appearing either singly, with an onset or color distractor, or both. In singleton mode, onsets produced oculomotor and attentional ca...

متن کامل

Oculomotor Distraction by Signals Invisible to the Retinotectal and Magnocellular Pathways 2 3 Authors 4

21 Irrelevant stimulus onsets interfere with saccade planning to other stimuli, prolonging 22 saccadic latency (the oculomotor distractor effect) or eliciting directional errors (saccadic 23 capture). Such stimulus-driven interference has been associated with the retinotectal pathway, 24 the direct pathway from retina to superior colliculus. Consistent with this theory, the distractor 25 effect...

متن کامل

Signals Invisible to the Collicular and Magnocellular Pathways Can Capture Visual Attention

The retinal projection to the superior colliculus is thought to be important both for stimulus-driven eye movements and for the involuntary capture of attention. It has further been argued that eye-movement planning and attentional orienting share common neural mechanisms. Electrophysiological studies have shown that the superior colliculus receives no direct projections from short-wave-sensiti...

متن کامل

Neural correlates of spatial orienting in the human superior colliculus.

A natural visual scene contains more information than the visual system has the capacity to simultaneously process, requiring specific items to be selected for detailed analysis at the expense of others. Such selection and inhibition are fundamental in guiding search behavior, but the neural basis of these mechanisms remains unclear. Abruptly appearing visual items can automatically capture att...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 11 13  شماره 

صفحات  -

تاریخ انتشار 2011